6 Change of basis and similarity

1. Let \mathcal{B} and \mathcal{B}^{\prime} denote two given basis

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\}, \quad \mathcal{B}^{\prime}=\left\{\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

for vector space \mathbb{R}^{3}. Let u be a given vector which coordinates with respect to standard basis
$\mathcal{S}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ are $(-2,8,6)$ (that is $[u]_{\mathcal{S}}=\left(\begin{array}{c}-2 \\ 8 \\ -6\end{array}\right)$). Find coordinates of vector u with
respect to basis \mathcal{B} (that is compute $[u]_{\mathcal{B}}$), and after that with the help of $[u]_{\mathcal{B}}$ compute $[u]_{\mathcal{B}^{\prime}}$ (coordinates of vector u with respect to basis \mathcal{B}^{\prime}).
2. Let $\mathcal{B}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right\}$ be bases for \mathcal{V}, and let $P=[I]_{\mathcal{B} \mathcal{B}^{\prime}}$ where $I(\boldsymbol{v})=\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathcal{V}$. Show that $[\boldsymbol{v}]_{\mathcal{B}^{\prime}}=P[\boldsymbol{v}]_{\mathcal{B}}$ for all $\boldsymbol{v} \in \mathcal{V}$.

Changing Vector Coordinates Let $\mathcal{B}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right\}$ be bases for \mathcal{V}, and let T and P be the associated change of basis operator and change of basis matrix, respectively, i.e. $T\left(\boldsymbol{y}_{i}\right)=\boldsymbol{x}_{i}$ for each i, and

$$
P=[T]_{\mathcal{B}}=[T]_{\mathcal{B}^{\prime}}=[I]_{\mathcal{B B}^{\prime}}=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
{\left[\boldsymbol{x}_{1}\right]_{\mathcal{B}^{\prime}}} & {\left[\boldsymbol{x}_{2}\right]_{\mathcal{B}^{\prime}}} & \ldots \\
\mid & \mid & \left.\mid \boldsymbol{x}_{n}\right]_{\mathcal{B}^{\prime}}
\end{array}\right) .
$$

- $[\boldsymbol{v}]_{\mathcal{B}^{\prime}}=P[\boldsymbol{v}]_{\mathcal{B}}$ for all $\boldsymbol{v} \in \mathcal{V}$.
- P is nonsingular.
- No other matrix can be used in place of $P=[I]_{\mathcal{B} \mathcal{B}^{\prime}}$.

3. For the space \mathcal{P}_{2} of polynomials of degree 2 or less, determine the change of basis matrix P from \mathcal{B} to \mathcal{B}^{\prime}, where

$$
\mathcal{B}=\left\{1, t, t^{2}\right\} \quad \text { and } \quad \mathcal{B}^{\prime}=\left\{1,1+t, 1+t+t^{2}\right\},
$$

and then find the coordinates of $q(t)=3+2 t+4 t^{2}$ relative to \mathcal{B}^{\prime}.

Changing Matrix Coordinates Let A be a lin-

 ear operator on \mathcal{V}, and let \mathcal{B} and \mathcal{B}^{\prime} be two bases for \mathcal{V}. be two bases for $[A]_{\mathcal{B}}$ and $[A]_{\mathcal{B}^{\prime}}$ are related as follows.$$
[A]_{\mathcal{B}}=P^{-1}[A]_{\mathcal{B}^{\prime}} P, \quad \text { where } \quad P=[I]_{\mathcal{B B}^{\prime}}
$$

is the change of basis matrix from \mathcal{B} to \mathcal{B}^{\prime}. Equivalently,
$[A]_{\mathcal{B}^{\prime}}=Q^{-1}[A]_{\mathcal{B}} Q, \quad$ where $\quad Q=[I]_{\mathcal{B}^{\prime} \mathcal{B}}=P^{-1}$
is the change of basis matrix from \mathcal{B}^{\prime} to \mathcal{B}.
4. Consider the linear operator
$A(x, y)=(y,-2 x+3 y)$ on \mathbb{R}^{2} along with the two bases

$$
\mathcal{S}=\left\{\binom{1}{0},\binom{0}{1}\right\} \quad \text { and } \quad \mathcal{S}^{\prime}=\left\{\binom{1}{1},\binom{1}{2}\right\}
$$

First compute the coordinate matrix $[A]_{\mathcal{S}}$ as well as the change of basis matrix Q from \mathcal{S}^{\prime} to \mathcal{S}, and then use these two matrices to determine $[A]_{\mathcal{S}^{\prime}}$.
5. Consider a matrix $M \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ to be a linear operator on \mathbb{R}^{n} by defining $M(v)=M v$ (matrix-vector multiplication). If \mathcal{S} is the standard basis for \mathbb{R}^{n}, and if $\mathcal{S}^{\prime}=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ is any other basis, describe $[M]_{\mathcal{S}}$ and $[M]_{\mathcal{S}^{\prime}}$.
6. $A(x, y, z)=(x+2 y-z,-y, x+7 z)$ is a linear operator on \mathbb{R}^{3}. (a) Determine $[A]_{\mathcal{S}}$, where \mathcal{S} is the standard basis. (b) Determine $[A]_{\mathcal{S}^{\prime}}$ as well as the nonsingular matrix Q such that $[A]_{\mathcal{S}^{\prime}}=Q^{-1}[A]_{\mathcal{S}} Q$ for $\mathcal{S}^{\prime}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.

Similarity

- Matrices $B, C \in \operatorname{Mat}_{n \times n}(R)$ are said to be similar matrices whenever there exists a nonsingular matrix Q such that $B=Q^{-1} C Q$. We write $B \simeq C$ to denote that B and C are similar.
- The linear operator $f: \operatorname{Mat}_{n \times n}(\mathbb{R}) \longrightarrow$ $\operatorname{Mat}_{n \times n}(\mathbb{R})$ defined by $f(C)=Q^{-1} C Q$ is called a similarity transformation.

7. The trace of a square matrix C is the sum of the diagonal entries

$$
\operatorname{trace}(C)=\sum_{i}(C)_{i i}
$$

Show that trace is a similarity invariant, and explain why it makes sense to talk about the trace of a linear operator without regard to any particular basis. Then determine the trace of the linear operator on \mathbb{R}^{2} that is defined by

$$
A(x, y)=(y,-2 x+3 y) .
$$

8. Show that two similar matrices must be coordinate matrices for the same linear operator.

Multiplication by a nonsingular matrix

Rank is invariant under multiplication by a nonsingular matrix. However, multiplication by rectangular or singular matrices can alter the rank.
9. Explain why rank is a similarity invariant.
10. Explain why similarity is transitive in the sense that $A \simeq B$ and $B \simeq C$ implies $A \simeq C$.
11. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 3 & 1 & 4 \\ 0 & 1 & 5\end{array}\right)$ and
$\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$. Consider A as a linear operator on \mathbb{R}^{n} by means of matrix multiplication $A(x)=A x$. Determine $[A]_{\mathcal{B}}$.
12. Show that $A=\left(\begin{array}{ll}4 & 6 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}-2 & -3 \\ 6 & 10\end{array}\right)$ are similar matrices, and find a nonsingular matrix Q such that $C=Q^{-1} B Q$.
13. Let λ be a scalar such that
$(C-\lambda I) \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is singular. (a) If $B \simeq C$, prove that $(B-\lambda I)$ is also singular. (b) Prove that $\left(B-\lambda_{i} I\right)$ is singular whenever $B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is similar to

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) .
$$

14. Let $\mathcal{B}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ and
$\mathcal{B}^{\prime}=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right\}$ be bases for \mathcal{V}, and let $P=[I]_{\mathcal{B B}^{\prime}}$ where $I(\boldsymbol{v})=\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathcal{V}$. Define $T \in \mathcal{L}(\mathcal{V}, \mathcal{V})$ by $T\left(y_{i}\right)=x_{i}$ for all $i(1 \leq i \leq n)$. Show that $P=[T]_{\mathcal{B}}=[T]_{\mathcal{B}^{\prime}}=[I]_{\mathcal{B B}^{\prime}}$.
15. Let $\mathcal{B}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right\}$ be bases for \mathcal{V}, and let $P=[I]_{\mathcal{B B}^{\prime}}$ where $I(\boldsymbol{v})=\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathcal{V}$. Show that P is nonsingular.
16. Let \mathcal{B} and \mathcal{B}^{\prime} be two bases for \mathcal{V}. Show that matrix P with the property that $[\boldsymbol{v}]_{\mathcal{B}^{\prime}}=P[\boldsymbol{v}]_{\mathcal{B}}$ for all $\boldsymbol{v} \in \mathcal{V}$ is unique.

InC: $3,4,5,7,11,12,13$. HW: 17, 18, $19+$ several problems from the web page http://osebje.
famnit.upr.si/~penjic/linearnaAlgebra/.
17. Let R_{90} denote rotation of 90° with centre of rotation in origin $(0,0)$, so that point $v \in \mathbb{R}^{2}$ is mapped to point $v^{\prime} \in \mathbb{R}^{2}$ (as is illustrated at figure right).
(a) Find coordinates of R_{90} with respect to standard basis.
(b) Determine what is rotation of point $v=\binom{\alpha}{\beta}$ for 90° about origin.
c) Find coordinates of R_{90} with respect to basis $\left\{\binom{1}{1},\binom{1}{-1}\right\}$.

18. Let T denote linear operator on \mathbb{R}^{2} which is reflection symmetry about line $y=x$ (for illustration what is reflection symmetry about line $y=x$ see $T(\square A B C D)=\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ on figure left).
(a) Find coordinate matrix of T with respect to the standard basis.
(b) Compute $T(v)$, if we have that $v=\binom{\alpha}{\beta}$.
(c) Find coordinate matrix representation of T with respect to basis $\left\{\binom{1}{1},\binom{1}{-1}\right\}$.
19. Let T denote linear operator define on space \mathbb{R}^{2} which first rotate vector for angle $\pi / 3$ around origin in positive direction, and after that do reflection symmetry about line $y=x$. Find coordinate matrix representation of T with respect to basis $\mathcal{B}=\left\{(1,1)^{\top},(1,-1)^{\top}\right\}$ (in another words find $\left.[T]_{\mathcal{B}}\right)$. Find coordinates of vector $T(v)$ with respect to same basis \mathcal{B}, where v is arbitrary element from \mathbb{R}^{2}.

