6 Change of basis and similarity

1. Let \mathcal{B} and \mathcal{B}' denote two given basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}, \qquad \mathcal{B}' = \left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$

for vector space \mathbb{R}^3 . Let u be a given vector which coordinates with respect to standard basis

$$\mathcal{S} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \text{ are } (-2,8,6) \text{ (that is } [u]_{\mathcal{S}} = \begin{pmatrix} -2\\8\\-6 \end{pmatrix} \text{). Find coordinates of vector } u \text{ with} \right\}$$

respect to basis \mathcal{B} (that is compute $[u]_{\mathcal{B}}$), and after that with the help of $[u]_{\mathcal{B}}$ compute $[u]_{\mathcal{B}'}$ (coordinates of vector u with respect to basis \mathcal{B}').

2. Let $\mathcal{B} = \{x_1, x_2, ..., x_n\}$ and $\mathcal{B}' = \{y_1, y_2, ..., y_n\}$ be bases for \mathcal{V} , and let $P = [I]_{\mathcal{B}\mathcal{B}'}$ where I(v) = v for all $v \in \mathcal{V}$. Show that $[v]_{\mathcal{B}'} = P[v]_{\mathcal{B}}$ for all $v \in \mathcal{V}$.

Changing Vector Coordinates Let $\mathcal{B} = \{x_1, x_2, ..., x_n\}$ and $\mathcal{B}' = \{y_1, y_2, ..., y_n\}$ be bases for \mathcal{V} , and let \overline{T} and P be the associated change of basis operator and change of basis matrix, respectively, i.e. $T(y_i) = x_i$ for each i, and

$$P = [T]_{\mathcal{B}} = [T]_{\mathcal{B}'} = [I]_{\mathcal{B}\mathcal{B}'} = \begin{pmatrix} | & | & | \\ [\boldsymbol{x}_1]_{\mathcal{B}'} & [\boldsymbol{x}_2]_{\mathcal{B}'} & \dots & [\boldsymbol{x}_n]_{\mathcal{B}'} \\ | & | & | \end{pmatrix}.$$

- $[\boldsymbol{v}]_{\mathcal{B}'} = P[\boldsymbol{v}]_{\mathcal{B}}$ for all $\boldsymbol{v} \in \mathcal{V}$.
- P is nonsingular.
- No other matrix can be used in place of $P = [I]_{\mathcal{BB}'}$.

3. For the space \mathcal{P}_2 of polynomials of degree 2 or less, determine the change of basis matrix P from \mathcal{B} to \mathcal{B}' , where

$$\mathcal{B} = \{1, t, t^2\}$$
 and $\mathcal{B}' = \{1, 1+t, 1+t+t^2\},\$

and then find the coordinates of $q(t) = 3 + 2t + 4t^2$ relative to \mathcal{B}' .

Changing Matrix Coordinates Let A be a linear operator on \mathcal{V} , and let \mathcal{B} and \mathcal{B}' be two bases for \mathcal{V} . be two bases for $[A]_{\mathcal{B}}$ and $[A]_{\mathcal{B}'}$ are related as follows.

$$[A]_{\mathcal{B}} = P^{-1}[A]_{\mathcal{B}'}P, \quad \text{where} \quad P = [I]_{\mathcal{B}\mathcal{B}'}$$

is the change of basis matrix from \mathcal{B} to \mathcal{B}' . Equivalently,

 $[A]_{\mathcal{B}'} = Q^{-1}[A]_{\mathcal{B}}Q, \quad \text{where} \quad Q = [I]_{\mathcal{B}'\mathcal{B}} = P^{-1}$ is the change of basis matrix from \mathcal{B}' to \mathcal{B} .

4. Consider the linear operator

A(x,y) = (y, -2x + 3y) on \mathbb{R}^2 along with the two bases

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 and $S' = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$

First compute the coordinate matrix $[A]_{\mathcal{S}}$ as well as the change of basis matrix Q from \mathcal{S}' to \mathcal{S} , and then use these two matrices to determine $[A]_{\mathcal{S}'}$.

5. Consider a matrix $M \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ to be a linear operator on \mathbb{R}^n by defining M(v) = Mv (matrix-vector multiplication). If S is the standard basis for \mathbb{R}^n , and if $S' = \{q_1, q_2, ..., q_n\}$ is any other basis, describe $[M]_S$ and $[M]_{S'}$.

6. A(x, y, z) = (x + 2y - z, -y, x + 7z) is a linear operator on \mathbb{R}^3 . (a) Determine $[A]_{\mathcal{S}}$, where \mathcal{S} is the standard basis. (b) Determine $[A]_{\mathcal{S}'}$ as well as the nonsingular matrix Q such that $[A]_{\mathcal{S}'} = Q^{-1}[A]_{\mathcal{S}}Q$ for $\mathcal{S}' = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$

Similarity

• Matrices $B, C \in \operatorname{Mat}_{n \times n}(R)$ are said to be <u>similar matrices</u> whenever there exists a nonsingular matrix Q such that $B = Q^{-1}CQ$. We write $B \simeq C$ to denote that B and C are similar.

• The linear operator f: $\operatorname{Mat}_{n \times n}(\mathbb{R}) \longrightarrow \operatorname{Mat}_{n \times n}(\mathbb{R})$ defined by $f(C) = Q^{-1}CQ$ is called a *similarity transformation*.

7. The trace of a square matrix C is the sum of the diagonal entries

$$\operatorname{trace}(C) = \sum_{i} (C)_{ii}.$$

Show that trace is a similarity invariant, and explain why it makes sense to talk about the trace of a linear operator without regard to any particular basis. Then determine the trace of the linear operator on \mathbb{R}^2 that is defined by

$$A(x, y) = (y, -2x + 3y).$$

8. Show that two similar matrices must be coordinate matrices for the same linear operator.

Multiplication by a nonsingular matrix

Rank is invariant under multiplication by a nonsingular matrix. However, multiplication by rectangular or singular matrices can alter the rank.

9. Explain why rank is a similarity invariant.

10. Explain why similarity is transitive in the sense that $A \simeq B$ and $B \simeq C$ implies $A \simeq C$.

11. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \\ 0 & 1 & 5 \end{pmatrix}$$
 and
 $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$. Consider A as a linear

operator on \mathbb{R}^n by means of matrix multiplication A(x) = Ax. Determine $[A]_{\mathcal{B}}$.

17. Let R_{90} denote rotation of 90° with centre of rotation in origin (0,0), so that point $v \in \mathbb{R}^2$ is mapped to point $v' \in \mathbb{R}^2$ (as is illustrated at figure right).

(a) Find coordinates of R_{90} with respect to standard basis.

(b) Determine what is rotation of point $v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ for 90° about origin.

c) Find coordinates of R_{90} with respect to basis $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.

18. Let *T* denote linear operator on \mathbb{R}^2 which is reflection symmetry about line y = x (for illustration what is reflection symmetry about line y = x see $T(\Box ABCD) = \Box A'B'C'D'$ on figure left).

(a) Find coordinate matrix of T with respect to the standard basis.

(b) Compute T(v), if we have that $v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

(c) Find coordinate matrix representation of T with respect to basis $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \}$.

19. Let T denote linear operator define on space \mathbb{R}^2 which first rotate vector for angle $\pi/3$ around origin in positive direction, and after that do reflection symmetry about line y = x. Find coordinate matrix representation of T with respect to basis $\mathcal{B} = \{(1,1)^{\top}, (1,-1)^{\top}\}$ (in another words find $[T]_{\mathcal{B}}$). Find coordinates of vector T(v) with respect to same basis \mathcal{B} , where v is arbitrary element from \mathbb{R}^2 .

12

12. Show that $A = \begin{pmatrix} 4 & 6 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} -2 & -3 \\ 6 & 10 \end{pmatrix}$ are similar matrices, and find a nonsingular matrix Q such that $C = Q^{-1}BQ$.

13. Let λ be a scalar such that

 $(C - \lambda I) \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is singular. (a) If $B \simeq C$, prove that $(B - \lambda I)$ is also singular. (b) Prove that $(B - \lambda_i I)$ is singular whenever $B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is similar to

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

14. Let $\mathcal{B} = \{x_1, x_2, ..., x_n\}$ and $\mathcal{B}' = \{y_1, y_2, ..., y_n\}$ be bases for \mathcal{V} , and let $P = [I]_{\mathcal{B}\mathcal{B}'}$ where $I(\boldsymbol{v}) = \boldsymbol{v}$ for all $\boldsymbol{v} \in \mathcal{V}$. Define $T \in \mathcal{L}(\mathcal{V}, \mathcal{V})$ by $T(y_i) = x_i$ for all $i \ (1 \le i \le n)$. Show that $P = [T]_{\mathcal{B}} = [T]_{\mathcal{B}'} = [I]_{\mathcal{B}\mathcal{B}'}$.

15. Let $\mathcal{B} = \{x_1, x_2, ..., x_n\}$ and $\mathcal{B}' = \{y_1, y_2, ..., y_n\}$ be bases for \mathcal{V} , and let $P = [I]_{\mathcal{BB}'}$ where I(v) = v for all $v \in \mathcal{V}$. Show that P is nonsingular.

16. Let \mathcal{B} and \mathcal{B}' be two bases for \mathcal{V} . Show that matrix P with the property that $[\boldsymbol{v}]_{\mathcal{B}'} = P[\boldsymbol{v}]_{\mathcal{B}}$ for all $\boldsymbol{v} \in \mathcal{V}$ is unique.

InC: 3, 4, 5, 7, 11, 12, 13. HW: 17, 18, 19 + several problems from the web page http://osebje.famnit.upr.si/~penjic/linearnaAlgebra/.